0%

第二章 索引

副本与视图

在Numpy中,尤其是在做数组运算或数组操作时,返回结果不是数组的副本就是视图

在Numpy中,所有赋值运算不会为数组和数组中的任何元素创建副本。

  • numpy.ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    import numpy as np

    x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
    y = x
    y[0] = -1
    print(x)
    # [-1 2 3 4 5 6 7 8]
    print(y)
    # [-1 2 3 4 5 6 7 8]

    x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
    y = x.copy()
    y[0] = -1
    print(x)
    # [1 2 3 4 5 6 7 8]
    print(y)
    # [-1 2 3 4 5 6 7 8]

索引与切片

数组索引机制指的是用方括号([])加序号的形式引用单个数组元素,它的用处很多,比如抽取元素,选取数组的几个元素,甚至为其赋一个新值。

整数索引

1
2
3
4
5
6
7
8
9
10
11
12
13
import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print(x[2]) # 3

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
print(x[2]) # [21 22 23 24 25]
print(x[2][1]) # 22
print(x[2, 1]) # 22

切片索引

切片操作是指抽取数组的一部分元素生成新数组。对 python 列表进行切片操作得到的数组是原数组的副本,而对 Numpy 数据进行切片操作得到的数组则是指向相同缓冲区的视图

如果想抽取(或查看)数组的一部分,必须使用切片语法,也就是,把几个用冒号( start:stop:step )隔开的数字置于方括号内。

为了更好地理解切片语法,还应该了解不明确指明起始和结束位置的情况。如省去第一个数字,numpy 会认为第一个数字是0;如省去第二个数字,numpy 则会认为第二个数字是数组的最大索引值;如省去最后一个数字,它将会被理解为1,也就是抽取所有元素而不再考虑间隔。

通过对每个以逗号分隔的维度执行单独的切片,你可以对多维数组进行切片。因此,对于二维数组,我们的第一片定义了行的切片,第二片定义了列的切片。

dots索引

副本与视图

在 Numpy 中,尤其是在做数组运算或数组操作时,返回结果不是数组的 副本 就是 视图

在 Numpy 中,所有赋值运算不会为数组和数组中的任何元素创建副本。

  • numpy.ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

【例】

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x
y[0] = -1
print(x)
# [-1 2 3 4 5 6 7 8]
print(y)
# [-1 2 3 4 5 6 7 8]

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x.copy()
y[0] = -1
print(x)
# [1 2 3 4 5 6 7 8]
print(y)
# [-1 2 3 4 5 6 7 8]

【例】数组切片操作返回的对象只是原数组的视图。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = x
y[::2, :3:2] = -1
print(x)
# [[-1 12 -1 14 15]
# [16 17 18 19 20]
# [-1 22 -1 24 25]
# [26 27 28 29 30]
# [-1 32 -1 34 35]]
print(y)
# [[-1 12 -1 14 15]
# [16 17 18 19 20]
# [-1 22 -1 24 25]
# [26 27 28 29 30]
# [-1 32 -1 34 35]]

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = x.copy()
y[::2, :3:2] = -1
print(x)
# [[11 12 13 14 15]
# [16 17 18 19 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [31 32 33 34 35]]
print(y)
# [[-1 12 -1 14 15]
# [16 17 18 19 20]
# [-1 22 -1 24 25]
# [26 27 28 29 30]
# [-1 32 -1 34 35]]

索引与切片

数组索引机制指的是用方括号([])加序号的形式引用单个数组元素,它的用处很多,比如抽取元素,选取数组的几个元素,甚至为其赋一个新值。

整数索引

【例】要获取数组的单个元素,指定元素的索引即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print(x[2]) # 3

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
print(x[2]) # [21 22 23 24 25]
print(x[2][1]) # 22
print(x[2, 1]) # 22

切片索引

切片操作是指抽取数组的一部分元素生成新数组。对 python 列表进行切片操作得到的数组是原数组的副本,而对 Numpy 数据进行切片操作得到的数组则是指向相同缓冲区的视图

如果想抽取(或查看)数组的一部分,必须使用切片语法,也就是,把几个用冒号( start:stop:step )隔开的数字置于方括号内。

为了更好地理解切片语法,还应该了解不明确指明起始和结束位置的情况。如省去第一个数字,numpy 会认为第一个数字是0;如省去第二个数字,numpy 则会认为第二个数字是数组的最大索引值;如省去最后一个数字,它将会被理解为1,也就是抽取所有元素而不再考虑间隔。

通过对每个以逗号分隔的维度执行单独的切片,你可以对多维数组进行切片。因此,对于二维数组,我们的第一片定义了行的切片,第二片定义了列的切片。

dots 索引

NumPy 允许使用...表示足够多的冒号来构建完整的索引列表。

比如,如果 x 是 5 维数组:

  • x[1,2,...] 等于 x[1,2,:,:,:]
  • x[...,3] 等于 x[:,:,:,:,3]
  • x[4,...,5,:] 等于 x[4,:,:,5,:]

整数数组索引

方括号内传入多个索引值,可以同时选择多个元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
r = [0, 1, 2]
print(x[r])
# [1 2 3]

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
r = [0, 1, 2]
c = [2, 3, 4]
y = x[r, c]
print(y)
# [13 19 25]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
r = np.array([[0, 1], [3, 4]])
print(x[r])
# [[1 2]
# [4 5]]

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])

r = np.array([[0, 1], [3, 4]])
print(x[r])
# [[[11 12 13 14 15]
# [16 17 18 19 20]]
#
# [[26 27 28 29 30]
# [31 32 33 34 35]]]

# 获取了 5X5 数组中的四个角的元素。
# 行索引是 [0,0] 和 [4,4],而列索引是 [0,4] 和 [0,4]。
r = np.array([[0, 0], [4, 4]])
c = np.array([[0, 4], [0, 4]])
y = x[r, c]
print(y)
# [[11 15]
# [31 35]]

【例】可以借助切片:与整数数组组合。

1
2
3
4
5
6
7
8
9
10
11
12
13
import numpy as np

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])

y = x[0:3, [1, 2, 2]]
print(y)
# [[12 13 13]
# [17 18 18]
# [22 23 23]]
  • numpy. take(a, indices, axis=None, out=None, mode='raise') Take elements from an array along an axis.

应注意:使用切片索引到numpy数组时,生成的数组视图将始终是原始数组的子数组, 但是整数数组索引,不是其子数组,是形成新的数组。 切片索引

1
2
3
4
5
6
7
import numpy as np

a=np.array([[1,2],[3,4],[5,6]])
b=a[0:1,0:1]
b[0,0]=2
print(a[0,0]==b)
#[[True]]

整数数组索引

1
2
3
4
5
6
7
import numpy as np

a=np.array([[1,2],[3,4],[5,6]])
b=a[0,0]
b=2
print(a[0,0]==b)
#False

布尔索引

我们可以通过一个布尔数组来索引目标数组。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x > 5
print(y)
# [False False False False False True True True]
print(x[x > 5])
# [6 7 8]

x = np.array([np.nan, 1, 2, np.nan, 3, 4, 5])
y = np.logical_not(np.isnan(x))
print(x[y])
# [1. 2. 3. 4. 5.]

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = x > 25
print(y)
# [[False False False False False]
# [False False False False False]
# [False False False False False]
# [ True True True True True]
# [ True True True True True]]
print(x[x > 25])
# [26 27 28 29 30 31 32 33 34 35]

数组迭代

除了for循环,Numpy 还提供另外一种更为优雅的遍历方法。

  • apply_along_axis(func1d, axis, arr) Apply a function to 1-D slices along the given axis。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    import numpy as np

    x = np.array([[11, 12, 13, 14, 15],
    [16, 17, 18, 19, 20],
    [21, 22, 23, 24, 25],
    [26, 27, 28, 29, 30],
    [31, 32, 33, 34, 35]])

    y = np.apply_along_axis(np.sum, 0, x)
    print(y) # [105 110 115 120 125]
    y = np.apply_along_axis(np.sum, 1, x)
    print(y) # [ 65 90 115 140 165]

    y = np.apply_along_axis(np.mean, 0, x)
    print(y) # [21. 22. 23. 24. 25.]
    y = np.apply_along_axis(np.mean, 1, x)
    print(y) # [13. 18. 23. 28. 33.]


    def my_func(x):
    return (x[0] + x[-1]) * 0.5


    y = np.apply_along_axis(my_func, 0, x)
    print(y) # [21. 22. 23. 24. 25.]
    y = np.apply_along_axis(my_func, 1, x)
    print(y) # [13. 18. 23. 28. 33.]